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We report on the implementation -of Burgers equation as a type-II quantum computation on
an NMR quantum information processor. Since the flow field evolving under the Burgers equation
develops sharp features over time, this is a better test of liquid state NMR implementations of type-II
quantum computers than the previous examples using the diffusion equation. In particular, we show
that Fourier approximations used in the encoding step are not the dominant error. Small systematic
errors in the collision operator accumulate and swamp all other errors. We propose, and demonstrate,
that theaccumulation of this error can be avoided to a large extent by replacing the single collision
operator with a set of operators with random errors and similar fidelities. Experiments have been
implemented on 16 two-qubit sites for eight successive time steps for the Burgers equation.

PACS numbers:

C) It has been suggested that some classical computa- the rotation angle of the shaped pulse is small, then the
tional problems can be solved by using a hybrid clas- excited magnetization may be accurately calculated only
sical quantum device, a type II quantum computer [1, 21. to first order in that angle, and the excited magnetiza-

S Such a device is essentially an array of small quantum im- tion is related to the RF waveform simply by a Fourier
formation processors (QIP) sharing information through transform. As a result, the required RF waveform can

• classical channels. NMR has proven to be a useful testbed also be determined by taking the inverse Fourier trans-
for QIP, and in particular we have shown that a lattice form of the desired initial magnetization. This technique

00 of parallel QIPs can be mapped onto a spin system by allows us to encode arbitrary magnetization profiles span-
Q%• creating a correspondence between the lattice sites and ning the various spatial locations in our experiment and
*- spatially distinct spin ensembles. A first proof-of-concept thereby approximating any desired initial conditions. In
S for numerically predicting the time-dependent solution the previously implemented diffusion equation, higher or-

of classical partial differential equation with dissipative der Fourier components of the number density are atten-
S terms using our NMR technique was demonstrated for' uated by the dynamics and the solution is stable even in

the diffusion equation [3, 4]. the presence of substantial accumulated errors.

; One of the most important challenges to implement- To push the development of type-II implementations
S ing a useful type-II quantum architecture is to avoid the we have chosen to explore the nonlinear Burgers equa-

accumulation of systematic errors. In the NMR imple- tion to test the breakdown for the Fourier approximation.
mentations to date there are two important sources of Over time, a shock front forms and high spatial frequen-
systematic errors: (1) a linear approximation relating the cies in the magnetization profile become important and
excited magnetization to the Fourier components of the it is these high spatial frequencies that we expect to be
shaped RF pulse; and (2) errors from the repeated col- most sensitive to errors. The numerical treatment of the
lision operators. Here we explore the impact of these QLG algorithm for the Burgers equation [6] therefore of-
errors on a simple computation and illustrate a simple fers a stronger proof of our NMR quantum computing ap-
means of reducing the accumulated error. proach since the effect of the nonlinear convective term in

The ensemble nature of the spin system allows us the equation generates a sharp edge as a shock develops
to split the sample into a spatial array of lattice sites. in time that is not mimicked by spin relaxation, random
Well developed. methods from magnetic resonance imag- self-diffusion, nor RF inhomogeneities. In addition, we

ing (MRI) allow us to selectively address the spins in demonstrate shock-formation driven by a tunable viscos-
each of these sites. Typically the addressing is carried ity parameter to show that the width of the shock .front
out in a space reciprocal to the spatial mapping, called is not determined by implementation imperfections.
k-space, where k is the wave-number of the correspond- The first-order accurate Fourier approximation was ex-
ing Fourier components. The k-space formalism [5] pro- pected to be the dominant error source in the NMR
vides a recipe for writing a spatially varying spin rotation implementation. However, NMR simulations with con-
across an ensemble of spins that have been distinguished trolled errors shows that the systematic error induced by
from each other by -a magnetic field gradient. The k- the experimental implementation of the unitary collision
space formalism is essentially the application of shaped operator associated with the quantum lattice gas (QLG)
radio frequency (RF) pulses in the presence of a linear algorithm is the major challenge. Replacing the single
magnetic gradient field as a means of exciting selective collision operator with a set of operators to randomize
frequencies. For most studies the full k-space formalism errors allows us to improve the robustness of the imple-
is not employed and a linear approximation is invoked. If mentation.
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A quantum lattice gas is a system of quantum particles
moving and colliding on a discrete spacetime lattice. This
quantum particle system is isomorphic to a lattice-based - -----

qubit system. The mapping is as follows: the probabil- o IShr
ity of a particle residing at a. particular lattice node is c 10). D t.g p........ ,

equated to the moduli squared of the probability ampli- .

tude of a qubit at a unique location being in its excited rdien compuWr

quantum state. That is, each spatial location that a par-
ticle may occupy is mapped onto a qubit associated with Encoding Measurement Streaming

a unique location.

The dynamics of evolution in the QLG algorithm can
be described in three scales, the microscopic, mesoscopic, FIG. 1: QLG algorithm implemented in four steps. Three hori-
and macroscopic scales. At the microscopic scale, each zontal lines represent proton spin, carbon spin and fried gradients.

Both starting magnetizations are encoded in proton channel first
due to the high signal to noise ratio while decoupled in carbon chan-

tice. For example, the particle can move to the right nel to prevent interfering of scalar coupling. The collision operator
or left lattice site in a one-dimentional construction. A is applied after the initialization. Measurements a8re also taken in

simplified dynamics allows a particle to change its direc- two steps in the proton channl followed by data processing in a

tion of motion (via a collision with another particle) or personal computer.

keep moving at constant speed in its original direction
of motion (streaming). One can describe the dynamical
behavior of particles at the mesosopic scale by determin-
ing their occupation probablities on the lattice points; in mal equilibrium states into pseudo-pure states [8].. The
one-dimention, only left-moving and right-moving prob- equilibrium state is highly mixed and the two nuclear
abilities are needed. The mesoscopic dynamical behav- spins have unequal magnetizations. Thus, equalization
ior of the system is modeled by a finite-difference form of the magnetizations is required prior to creating the
of a quantum Boltzmann equation. Finally, to bridge pseudo-pure state. The dynamical evolution is caused
to the macroscopic scale, the occupation probabilities of by a collision operator (a quantum operation), and mea-
the particles residing at each lattice site are summed to- surement and streaming (classical operations) according
gether to determine the number density. This number to the QLG algorithmic paradigm. The four main sec-
density quantity defined at each lattice node becomes a tions of the NMR implementation of QLG algorithm are
continuous field at the lattice resolution approaches in- graphically depicted in Figure 1.
finiity, which is called the continuum limit. Through a First, each occupation probablility is mapped onto a
Chapman-Enskog purturbation procedure applied in the lattice site as the expectation value of a number opera-
continuum limit, from the quantum Boltzmann equation tor at a spacetime site nAx at time mAt. As a result,
emerges an effective field theory that is parabolic in time the initial state of the ath qubit is feaf(nAx, rnAt)f1) +
and space. and nonlinear in the number density [7). - f(n rn/At)0). The combined the wave func-

The QLG algorithm is initialized, in the NMR case, by tion for a lattice site is a tensor product over the qubits,
encoding the particles' occupation probabilities as a spin-
magnetization profile. To handle the one-dimensional ( V'-• 7 I1l)+ fi(1- 12)110) (1)
Burgers equation, it is sufficient to use two qubits (two

spin-½ nuclei) per lattice site, where each stores a single + V(1 - fi)f2101) + V(1 - f)(1 - f2)100)
real valued occupation probability. A room-temperature
solution of isotopically-labeled chloroform (13CHC13 ) In the basis of a two-qubit system, the number opera-
was chosen for implementing the'experiments, where the tors for the occupancy of qubits are defined in terms of
hydrogen and the labeled carbon nucleus served as qubits the singleton qubit number operation f 1 0 )a
1 and 2, respectively. The difference of the gyro-magnetic 0 0 a
ratio of two spins generates widely spaced resonant fre- follows: fil 1 ® hi and fi2 = i ® 1. Therefore, the
quencies that allows us to address each spin indepen- occupation probability is represented as follows:
dently. A lattice of QIPs are' related to the ensemble
sample by creating a correspondence between lattice sites f. (nAx, mAt) = (O(nAx, mAt) Iift I0(nAx, mAt)). (2)
and spatially dependent positions in the sample. A lin-
ear magnetic field gradient is used to generate distinct The macroscopic scale dynamical quantity of the quan-
spatially-dependent resonant frequencies that we can dis- tum lattice gas is the number density, p, defined as the
tinguish and modulate by a shaped RF pulse. In this way, sum of the occupancy probablity. The equilibrium occu-

the magnetic field gradient allows the entire spin ensem- pation probabilities that we use are

ble to be sliced into a lattice of smaller, and individually
addressable, sub-ensembles. * q q + 1 - - (

The lattice initialization starts by transforming ther- 2 8 [251V (3 ) ( (ej
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where ea is ±1 for different qubits. while the RF pulse is applied. This approximation leads
The initial magnetization is specified by using a RF to a systematic error that will accumulate during the

pulse shaped by the Fourier transform of the desired course of the computation. In general, these errors are
magnetization (tranform of the initial number density easy to avoid, but since the purpose of the investigation
profile). While applying the shaped pulse, a carbon de- was to explore the sensitivity to accumulated errors we
coupling sequence is performed to prevent the scalar cou did not correct it. The collision operator follows the en-
pling from interfering with the low power shaped pulses. coding (Step 2), and it is implemented without magnetic
In addition, the 1 pulse, which rotates the information field gradients to ensure that all of the sites in the sample
from the x-axis to the z-axis, is applied separately just undergo the same transformation.
after each initialization. This is done to keep the valu- Third, we measure the occupation probabilities. This
able information along the longitudinal direction where process erases all the superpositions and quantum entan-
it will not be affected by the gradient and chemical shift. glement that was created by the unitary collision opera-
The encoding of initial states on both spins is accom- tor in the second step.
plished in two steps: The initial carbon magnetication is The occupation numbers of each spin are ob-
recorded on the protons before being transferred to the tained following the collision step by measuring the z-
carbons and followed by the initialization of proton magt magnetization according to the following equation
netication. Furthermore, a short pulse sequence, called 1
the clean sequence, is executed after the first swap gate fa(n, m) = [ (-b(n, 7m)Io.i1(n, m))]. (7)
to erase the phase distortion that may be caused by the
decoupling sequence. Since only o, and ay are observable in our NMR spec-

Second, the evolution of fa is governed by the com- trometer, a ir/2 pulse has been used to bring the z-
bined action of the collision operator, measurement and magnetization into the transverse plane. The measure-
streaming. The collision operator is applied to all the merits are done in two seperate experiments, where a
lattice sites independently, resultinig in 10' ) = SWAP gate is applied to bring the magnetization from
lieAx)) for all nd . The choice of the particular con) - carbon channel to the, proton channel. This SWAP op-
ponents , ohfor all n.Th coice of terticua con eration is done because the higher signal-to-noise ratio
ponents of the unitary collision operator determines the in the proton channel allows us to improve the accuracy
form of the macroscopic effective field theory (a Parabolic of our implementation. During the "readout" process
partial differential equation) and the value of its trans- (Sep 3), a week magnetic field gradient is applied to dis-
port coefficients (coefficients of the dissipative terms). A (St

tinguish different sites. The observed proton signals are
general representation of the collision operator for the digitized and Fourier transformed, allowing us to record
Burgers equation is a block diagonal matrix. This single the spatially-dependent spin magnetization profile.
quantum operator is chosen to be Fourth, and last step of the QLG algorithm, we shift

._[ (I C - a H C)] the fa obtained in the previous step to its nearest neigh-S= exp,-4.882 - (4) bor -using a short MATLAB program. This step requires

only classical communication between neighboring sites.
which has the following matrix representation: The time is incremented after this step. Then, we loop

back to step 1 and update the field of occupation proba-0 0 0 , bilities over the lattice sites. In this way, we, can continue

-0.8 0.6 0 (5) to iterate forward in time and make a time-history record
0-0.6 0.8 0, of the occupation probabilities, which in turn gives us the

0 1 temporal evolution of the number density field. In the

implementation of the Burger equation, we observed de-
S The unitary operator C can be decomposed of a se- viations between the numerically predicted data points

quence of RF pulses and scalar coupling. The product and analytically predicted solutions. These errors can
operators in the exponent commute with each other, re- be attributed to imperfections in the NMR implementa-sulting in C=exp, [-i4g~r 7' • a ] exp [-_i a 7r aH ]. beatiudtomprcinsnthNM ipeet-

su4ingp 8 2  ep [ 28  tion. The major error sources in the NMR implemen-
Both terms can be expanded as natural'scalar Hamilto- tation are known, so to explore the source and relative
nian couplings sandwiched with the appropriate single strength of these errors, we have simulated the NMR ex-
rotations, resulting in periments. The major error source in this implemen-

(.M c~ .l ,c -.) (6) tation is the collision operator, and it is introduced by
Yignoring the scalar coupling between proton and carbon

x +a)e-'-O H+O'c)e-'-a! a• e-sduring the RF pulses. When applying an RF pulse on
the proton qubit, the Hamiltonian in the rotating form is

The exponential terms of single spin rotations are imple- H = 2*kJaoc4 + "/HBlor, where B1 is the strength of

mented by 7r/2 and 7r/4 pulses. The exponents of terms the RF pulse. With the presence of the scalar coupling,
with o'Hocz represent the natural internal Hamiltonian a small portion of the proton magnetization has been
evolutions with time period 1/2J, where J is 214Hz. transfered to the carbon qubit. Therefore, the applied
Here, the evolution of the internal Hamiltonian is ignored propagator can be recast as U Udesired Ueo..



4

were implemented on 16 two-qubit sites. An improve-
ment of our present experimental a roach usin collision
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FIG. 2: The growth of the systematic errors due to the collision 0.6
operator in two NMR implementation. The single collision opera-
tor data (dots) is fit (solid line) with a line of slope 1, which shows ' 1.4 t=0.0417 t= 0.0"486

linear growth of the error. The collision operator data with mod- 1.2
ulated phases (pluses) is the fit with a line of slope 3/4 (dashed 5 1
line). The buildup of the systematic errors has been slowed down 0 0.8

00.6by proposed method. However, the systematic errors have not been •4-

totally converted into random errors. 0.2 0.4 0. 6 0.8 1 0.2 0.4 0.6 0.8 1
position position

FIG. 3: The experimental data are plotted together with the ana-
lytical solutions for 8 time steps on a lattice of 16 parallel two-qubitii 2

The error in the collision operator is a systematic er- QIPs. Viscosity: 1 At2 Experimental NMR data (dots) versus
ror that builds up throughout the successive time steps. analytical solution (curves). Randomizing the error terms in the
Although this is not the dominant error at the begin- collision operator has improved the experimental results dramati-

ning, of the implementation, it eventually dominates the cally.
first-order error due to the Fourier approximation and
becomes the dominant issue after just several time step
interations. Notice that while the reduction of the initial
magnetization from the Fourier transform is systematic, operators with modulated phases is observed. The agree-
since the magnetization profile is changing the errors are ment of the data to the analytical solutions is encourag-
not precisely repeated. In the collision operator, how- ing and suggests that totally randomizing error terms in
ever, the errors are exactly the same from step to step. the collision operator may offer further improvement.
In addition we expect that the radio frequency inhomo-
geneity leads to strongly correlated errors in the lattice NMR quantum simulations has provided an alternative

encoding. Hence, we have proposed replacing a single way to study the NMR spectroscopic implementations.
collision operator with a set of collision operators that FYom the simulation, we find the major error sources
have similar fidelity but randomized error terms. are due to imperfect control of the quantum spin system

Since the collision operator for the Burgers equation is and the Fourier approximation associated with setting its

a zero-order coherence term, the collision operator com- magnetization profile. Our proposed method for convert-

mutes with the rotation operator. Therefore, we apply ing the systematic errors into random errors is effective.

a 900 rotation operator. to the collision operator at each The improvement we achieve relative to the previous ex-
step to mitigate error growth. Consequently, a dramatic periment is encouraging, and it demonstrates the possi-

improvement is observed as shown in Figure 2. On a bility of using the same technique in future studies. The

logarithmic plot, the simulation results fit a line with a closeness of the numerical data to the exact analytical
results for the nonlinear Burgers equation further provesslope of 3/4 * If the error term s in the collision operators t e p a t c lt fi p e e t n h L l o i h s

were totally randomized and hence followed a Gaussian the practicality of implementing the QLG algorithm us-distribution, the best-fit regression line should have had ing a spatial NMR technique. In addition, although the
dist topof 1/2. The devitation between our simulation limitation of the Fourier approximation is not dominant,a slope othe problem of precisely initializing a lattice of QIPs still
data and the ideal Gaussian case indicates residual sys- rem
tematic error in the collision operator. In a future study, ams an open issue.
we may use strongly mudulated pulses to randomize the We thank M. Pravia, N. Boulant, H. Cho and Y. Liu for
error terms. The experimental number densities are over- valuable discussion. This work was supported by the Air
plotted in Figure 3 with the exact analytical solutions. Force Office of Scientific Research, along with DARPA,
Eight successive time steps of the quantum algorithm ARDA and ARO.
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